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1 Introduction

In order for a receiver to interpret a prefix code, he must understand how the
strings of bits in the coded message map to the source alphabet symbols. The
code may be static, i.e. prearranged; dynamic, where the code is computed
online as the message is received; and semi-static, where a fixed code is trans-
mitted as a prefix to the message [13]. In the semi-static case we then have the
additional problem of how to encode the code, and in particular how to do this
efficiently. The efficiency of semi-static coding is the topic of this report.

Fundamentally the code consists of two parts: What are the variable-length
bit strings which make up the code, and What are the source alphabet symbols
that correspond to those strings. The former is highly structured: no bit string
is a prefix for another. This property allows us to represent the bit strings as a
binary tree, where the unique path to each leaf spells out a bit string. Moreover
this binary tree should be complete, if the prefix code is optimal. We will con-
sider this, the structure of the code, in section 2. The latter (correspondence of
source alphabet symbols) is generally less structured and depends highly on the
nature of the source alphabet. We can consider this a completely separate prob-
lem, though there are some gains to be had by considering it, this is addressed
in section 3.

2 Code structure

2.1 Coding complete trees

A well-known approach [3, 6] to encoding a prefix code uses one bit for each of
the 2n−1 nodes, where n is the number of bit strings (and thus source symbols).
This is to be expected: there are Cn (the nth Catalan number) possible complete
binary trees with n leaves [9]; Cn grows as 4n, so we should expect the number
of bits needed to specify a code to grow as log 24

n = 2n. Generally if we know
how many codes f(n) there are for n symbols, we can take ⌈log

2
f(n)⌉ to give

a lower limit on the number of bits that will be required to encode it, as any
fewer bits would be unable to provide a unique encoding for each code.
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2.2 Canonical codes

There are only two possible (optimal) sets of three bit strings to use for a three
symbol prefix code: {0,10,11} and {1,00,01}. We can consider these as equiva-
lent; whichever we use, we will end up with messages of the same length. The
important aspect is the level sequence, i.e. how many strings there are of each
length; the only possible level sequence for n = 3 is 1,2. Consider the possibil-
ities for n = 4: {00,01,10,11}, {0,10,110,111}, {0,11,100,101}, {1,00,010,011},
{1,01,000,001}. Most of these have the level sequence 1,1,2, the exception is the
first with 0,4,0.

We consider classes of codes with the same level sequence equivalent, and
we choose only one of them as the “canonical” code [10, 2]. The canonical code
is the one in which the bit strings in lexicographical order are also in order of
increasing length. Here we see that only {00,01,10,11} and {0,10,110,111} are
canonical. Similarly {0,10,11} is canonical for n = 3. It is also easy to generate
the canonical bit strings from the level sequence. There are other aspects of the
canonical code which we will see in section 3.

2.3 Coding canonical codes

Narimani and Khosravifard [8] give a coding for a level sequence that uses only
n− 3 bits, they express this as a sequence of functions applied to an initial level
sequence.

An equivalent code is an unary coding of the internal node level sequence,
i.e. the number of internal nodes at each level in the tree (including the root),
from which the level sequence can be derived. The n− 1 internal nodes require
n − 1 bits for the unary coding of the sequence, with 1 coded as 1, 2 as 01, 3
as 001, etc. As the first bit of the code is always 1 (indicating the root, which
always has exactly one internal node), and the last bit is always 1 (indicating
the end of the unary string for the last level), these two bits can be elided,
yielding a code that uses n− 3 bits.

As an example, a level sequence of 0,4 corresponds to an internal node level
sequence of 1,2, which is encoded as 1,01 (comma for illustration only). After
removing the leading and trailing bits this is just 0, which is sufficient to dis-
tinguish from the only other n = 4 level sequence 1,1,2 (internal node sequence
1,1,1, encoded as 1,1,1 or just 1).

2.4 Theoretical limit

The number of canonical prefix codes has been studied many times [5, 1, 4, 11].
The number of codes for n symbols grows as 1.755n, thus requiring approxi-
mately 0.8115n bits in the long run. Therefore there exists a coding with cn

bits with c < 1, however there may not be an effective coding with that property.
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3 Symbol assignments

3.1 Bit length per symbol

The standard approach takes advantage of the fact that we don’t care (when
creating the code) if we have B=10,C=11 or C=10,B=11; bit strings of the
same length are equivalent. In a true canonical code, the bit strings are al-
ways assigned to the source symbols in alphabetical order (so we’d always have
B=10,C=11). Therefore we can list, for each symbol of the source alphabet,
how long the corresponding bit string is (e.g. 1,2,2 for A=0,B=10,C=11; 2,1,2
for A=10,B=0,C=11). We can derive the level sequence by counting the number
of symbols at each length, and we can assign bit strings to symbols in lexico-
graphical order. As bit strings can be up to n − 1 long, we need ⌈log

2
n⌉ bits

per symbol, so we end up with n ⌈log
2
n⌉ bits total.

3.2 Alphabet permutations

For another approach, consider that we have three symbols in the source al-
phabet and we want to assign them to the canonical bit sequences {0,10,11}.
There are six possible assignments; clearly these are just the permutations of
three objects. If we have prearranged an alphabet of symbols to draw from, we
can encode permutations of those n symbols with n ⌈log

2
n⌉ − n bits. Recall

from section 2 that we can specify a canonical set of bit sequences in around n

bits. Therefore, if we want to give the complete code, bit sequences and symbol
assignments, we can send the bit sequence specification followed by the alphabet
permutation in n ⌈log

2
n⌉ bits total.

It is interesting that this approach achieves the same cost as that mentioned
in subsection 3.1. Notably this does not take full advantage of the canoni-
cal code; by specifying the permutation of the whole alphabet we allow both
B=10,C=11 and C=10,B=11. It should be possible to achieve some improve-
ment if we take this into account. However note that in the case of a “Fibonacci”
tree, with a level sequence like 1,1,1,. . . ,2, there is no escaping the need to spec-
ify the full permutation of n − 2 symbols. Therefore we could only gain an
advantage in conjunction with a tree encoding that uses fewer bits to describe
such a tree. There is only one such tree, so perhaps this is possible.

3.3 Theoretical limit

For each canonical set of bit sequences considered in 2.4, we need to decide how
to partition the symbols among the levels/bit lengths. For n = 4, {00,01,10,11}
only has one partition, with all 4 symbols at level 2; however {0,10,110,111} has
12 possibilities (any of 4 for level 1, any of remaining 3 for level 2, level 3 is then
fixed); a total of 13.

Molteni [7] discusses limits and asymptotic behavior of this sequence [12],
the result in bits is approximately n log

2
n − 1.885n. Therefore there should
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exist a coding with n log
2
n− n bits, but whether there is an effective coding is

unknown.
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